
S
t

K
A

a

A
R
R
A

K
P
S
B
P
C
M

1

M
l
m
o
B
s
c
b
t

a
1

0
h

Agricultural and Forest Meteorology 164 (2012) 10– 19

Contents lists available at SciVerse ScienceDirect

Agricultural  and  Forest Meteorology

jou rn al h om epa ge: www.elsev ier .com/ locate /agr formet

hortcomings  of  classical  phenological  forcing  models  and  a  way  to  overcome
hem

laus  Blümel ∗,  Frank-M.  Chmielewski
gricultural Climatology, Faculty of Agriculture and Horticulture, Humboldt-University of Berlin, Germany

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 13 January 2012
eceived in revised form 19 April 2012
ccepted 1 May  2012

eywords:
henological modelling
pring-Warming model
eginning of blossom
hotoperiod
limate change
odel comparison

a  b  s  t  r  a  c  t

A  theoretical  study  proves  that the  common  Spring-Warming  model,  which  is widely  used  in  phenolog-
ical  studies  and  frequently  described  in the  literature,  has  systematic  defects  that  do  not  allow  a reliable
projection  of phenological  stages  for  the  future  (e.g.,  up  to 2100).  When  calculating  spring  phenological
phases  (e.g., beginning  of  blossom  or leaf unfolding,  etc.),  defects  occur  because  either  the  advance  in
blossom  is  included  implicitly  in  the  model  and  cannot  be  calibrated  sufficiently  to  observations,  or  the
model parameters  attain  unphysiological  values  or lie  in  a range  so  that  a prognosis  for  the  far  future
cannot  be accomplished.  Therefore,  the  introduction  of a daylength  term  is  suggested,  which  improves
the  Spring-Warming  model  and  eliminates  almost  all of  the  discussed  shortcomings.  The  performance
of  this  improved  model  is  demonstrated  by  calculating  the  beginning  of apple  blossom  in  Germany.
For  this  purpose,  we  compared  the  improved  model  (M1)  with  three  different  versions  of the  original
Spring-Warming  model  (M2–M4).  The  models  were  calibrated  (optimized)  using  observed  blossoming
and  temperature  data  (1962–2009),  which  have  been  regionalized  on  a 0.2◦ grid.  The optimization  was
done  for  a representative  grid  point.  The  performance  of the  various  model  versions  in predicting  the
beginning  of  apple  blossom  was compared  with  observations  from  independent  years,  which  were  not
used in  the  optimization.  Also,  the  beginning  of  blossom  and its possible  future  changes  were  calculated

with  these  models,  using  temperatures  from  the  Regional  Climate  Model  REMO-UBA  with  GHG emission
scenario  A1B  (2001–2100).  The  new  daylength  term  improved  the performance  of  model  M1  remark-
ably,  and  the  model  calibration  automatically  led  to  model  parameters  with  meaningful  values.  These
results,  which  were  confirmed  by other  fruit  tree  species  and  locations,  provided  strong  evidence  that
the conventional  Spring-Warming  models  in phenology  must  be  extended  by  photoperiodic  sensitivity,
at  least  for species  which  are  photosensitive.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Many people working in tree phenology (e.g., Chuine et al., 2010;
orin et al., 2009; Vitasse et al., 2011) have claimed that pheno-

ogical phases in spring (beginning of leaf unfolding or blossom of
ost plant species, etc.) are predominantly controlled by the course

f air temperature. In contrast, some authors (e.g., Körner and
asler, 2010) have suggested that because of photoperiodic con-
traints, observed effects of temperature on spring lifecycle events

annot be extrapolated to future temperature conditions on the
asis of models driven by temperature alone. In the last few years
here have been an increasing number of studies, which claimed

∗ Corresponding author at: Humboldt-University of Berlin, Faculty of Agriculture
nd Horticulture, Professorship of Agricultural Climatology, Albrecht-Thaer-Weg 5,
4195 Berlin, Germany. Tel.: +49 30 31471222; fax: +49 30 31471211.

E-mail address: Klaus.Bluemel@agrar.hu-berlin.de (K. Blümel).

168-1923/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.agrformet.2012.05.001
that photoperiod plays an important role in driving phenophases
(Häkkinen et al., 1998; Schaber and Badeck, 2002; Körner, 2006;
Linkosalo et al., 2006; García-Mozo et al., 2009a, 2009b). However,
most stated that it is only important for mean- and late-flowering
species and less essential for early-flowering fruits like peaches
and apricots (Hunter and Lechowicz, 1992; Körner and Basler,
2011; Hänninen, 1995; Körner, 2006). An evaluation of 12 different
phenological models for 11 North American woody species indi-
cated support for the Spring-Warming models with photoperiod
limitations (Migliavacca et al., 2012). There is still an on-going con-
troversial discussion on this issue.

Much compelling evidence demonstrates photoperiodism
working as a mechanism to prevent plants from a too-early break
of ecodormancy and constrains the influence of temperature on

development to ‘safe periods’, i.e., far away from frost damage.
Apple and pear are examples of species that are not temperature-
only driven (Körner, 2006). Körner stated that photoperiodism
protects them from premature bud break. This statement is

dx.doi.org/10.1016/j.agrformet.2012.05.001
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
mailto:Klaus.Bluemel@agrar.hu-berlin.de
dx.doi.org/10.1016/j.agrformet.2012.05.001
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ontrary to what Heide and Prestrud (2005) claimed. They argued
hat apple and pear trees are not influenced by daylength, but only
y temperature.

Physiologically, Körner and Basler (2010) argued that a lack of
ufficient chilling in mild winters may  delay bud break but may
lso be partially replaced by longer photoperiods. This hypothesis
s confirmed by experiments performed by Caffarra and Donnelly
2011),  but seems to depend on the species under consideration.
his means that photoperiodic mechanisms in plants are not only
n insurance against a too-late induction of dormancy, but also
gainst a too-early “dormancy” break in the season (Körner, 2006)
nd against too-early and too-late blossom. An attempt to incorpo-
ate photoperiodism as a covariate to temperature in phenological
odels was made by Schaber and Badeck (2003) in a promoter-

nhibitor model (PIM). This approach differs widely from ours. The
IM resulted in a better fit and validation relative to the classical
odel (i.e., without photoperiodism). However, these improve-
ents could not be confirmed by Linkosalo et al. (2008),  because

n external validation, calculated using independently estimated
odel parameters, resulted in much higher external root mean

quare errors than for the other, simpler models, which were also
ested in their study. They argued that this poor performance was
aused by over-parameterization because the PIM has a total of 10
arameters.

Our own numerical computations for this study using the com-
on, temperature-only driven phenological models for apple led

o the following results: Calibration of the model parameters often
esulted in more or less meaningless values. For example, the start-
ng date of temperature accumulation t1 [see Section 2.1,  Eq. (1)]
ttains very late values and falls on dates when the tempera-
ure forcing has already begun or, at least, will have begun in the
ar future due to climate warming. That is exactly the criticism

ade by Linkosalo et al. (2008) of the Unified and Spring-Warming
odel.
Optimizing the model parameters in the period 1961–2009 with

1 held constant at meaningful, small values, leads to a model which
s unable to predict any prescribed trend for the beginning of blos-
om, especially if the forecast range is long and extended up to the
ear 2100. The model has its own built-in trend and cannot be cal-
brated to calculate any trend which differs significantly from this
uilt-in trend. Furthermore, this model shows substantial system-
tic error (Fig. 9) and the base temperature TBF [Eq. (2)] becomes
uch too low to have any physiological meaning. [Heat stimuli are

nly accumulated if the daily mean air temperature is greater than
BF (see Eq. (3) and (4)).] Additionally, the forcing requirement F*
nd TBF are strongly interdependent and thus their parameter val-
es are partly exchangeable (increasing F* and decreasing TBF and
ice versa), which causes very large confidence intervals for these
wo parameters (see Section 4, Fig. 8).

In the first theoretical part of this paper (Section 2.2), we will
se analytical integration to prove why the typical, commonly used
pring-Warming model has the undesirable properties mentioned
bove.

Then we will proceed finding a way to overcome these short-
omings (Section 2.3). Linkosalo et al. (2006) argued that, besides
hilling and forcing, other environmental factors such as changes
n light conditions are involved in the regulation of the timing of
udburst. We  will show that their question “Is there something
issing?” seems to have the answer “yes”. For this purpose we
ill include an additional quantity (daylength) in the phenological
odel.
In the subsequent sections we will demonstrate, by compar-
ng the performance of the old model versions (M2–M4) with
he improved model (M1), that almost all deficiencies are elimi-
ated and the forecast is essentially improved by this daylength
erm.
d Forest Meteorology 164 (2012) 10– 19 11

2. Scientific background

2.1. Forcing model for the beginning of blossom

In the present climate in Germany, dormancy of most fruit trees
is released on average before the end of December (Chmielewski
et al., submitted for publication). Thus, for now the plants can be
assumed to be in the state of quiescence from the beginning of
January, ready to react to favourable temperatures.

“Forcing” describes, very vaguely, the accumulation of heat
stimuli for a plant following the period of dormancy. When suffi-
cient heat portions are accumulated the plant will start flowering. A
very well-known and widely used forcing model for the beginning
of blossom of many plant species is the Spring-Warming model. It
has the form

F∗ =
t2∑

i=t1

Rf (Ti)�t  (1)

Rf(Ti) is a function of the daily mean temperature Ti on day i and is
called the forcing rate function. �t  is the time step, usually 1 day
(1 d). The smallest summation index t2, for which the sum on the
right side approaches or exceeds the prescribed plant-specific forc-
ing requirement F* is the date (day of year = DOY) of the beginning
of blossom in the year under consideration. The starting day t1 of
the summation is prescribed as a fixed value (e.g., 1 January) or
has to be determined by optimization. In a forcing model which is
supposed to be a mechanistic model and not a pure fitting model,
t1 should lie before the first forcing days but after the “release of
dormancy”. If one applies Eq. (1) to spring temperatures Ti of sev-
eral, subsequent years, one obtains a prediction for the beginning
of blossom t2(pred, j) for each year j.

In the original version of the Spring-Warming model (Hunter
and Lechowicz, 1992), the forcing rate function according to Eq. (2)
is used:

Rf (Ti) = max(Ti − TBF , 0). (2)

The summation in (1) [with (2) inserted for Rf(Ti)] is made up of the
difference between the daily mean temperature Ti on day i and a
plant-specific base temperature TBF, provided that this difference is
greater than zero. If one uses (2) as forcing function in (1),  the unit
of F* is K d. Phenologists denote this as growing degree days (GDD).

2.2. Shortcomings of the model (theoretical considerations)

The Spring-Warming model [Eq. (1) and (2)]  can be approxi-
mated by an integral:

F∗ =
∫ t2

t=t1

max(T − TBF , 0) dt. (3)

The following computations can be performed for almost any arbi-
trary forcing functions. For this reason, T − TBF is replaced by an
almost freely chosen function f(x):

F∗ =
∫ t2

t=t1

max(f (T − TBF ), 0) dt (4)

t is the time, now considered as a steady, continuous variable, mea-
sured in DOY. f(x) is supposed to be a monotonous function of x
and we assume that f(T − TBF) ≤ 0 if and only if T ≤ TBF or T − TBF ≤ 0,
respectively. In this case, the integrand in (4) is always zero if
T − T ≤ 0.
BF

Now we assume an idealized, linear increase of the temperature
with time t in spring:

T(t) = at + b. (5)
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Fig. 1. Relation between TBF and F* in the indeterminate range of the Spring-
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n this case, the integrand in (4) is zero, if and only if

 t + b − TBF ≤ 0 or t ≤ TBF − b

a
=: ts, (6)

espectively. The new quantity ts, defined in (6),  is the day of year
hen the forcing accumulation starts, provided the idealized linear

emperature increase is valid. a and b are constants which should
e determined in a way that the ‘slope a of temperature in spring’
nd the ‘temperature level b of the year under consideration’ is
eproduced as well as possible.

As long as t1 ≤ ts applies, ts can be inserted as lower boundary of
he integral in Eq. (4).  In this case, one can omit the max-function,
ince now f(T − TBF) is always positive. Now instead of (4) we can
rite

∗ =
∫ t2

t=(TBF −b)/a=ts

f (T − TBF ) dt. (7)

ith the coordinate transformation

:=T − TBF = a t + b − TBF (8)

ne gets for the lower and upper boundary of the integral

1 = a ts + b − TBF = a
TBF − b

a
+ b − TBF = 0 (9)

nd

2 = a t2 + b − TBF (10)

nd from (8),  it follows that

t = dz

a
(11)

hus (7) can be rewritten as

∗ =
∫ a t2+b−TBf

z=0

f (z)
a

dz = 1
a

[F(a t2 + b − TBF ) − F(0)]

= 1
a

g(a t2 + b − TBF ). (12)

(x) is the antiderivative of f(z) and does not need any precise spec-
fication. g(x) was inserted as a substitute for the term in brackets.
t is important that the function g(x) depends, as well as the term
n brackets, only on the argument a t2 + b − TBF. If g(x) is invertible,
ne gets from (12)

 t2 + b − TBF = g−1(aF∗) (13)

r

2 =
[

g−1(aF∗)
a

+ TBF

a

]
−

(
1
a

)
b (14)

espectively. Eq. (14) is only correct as long as t1 < ts = (TBF − b)/a
pplies. Note that solution (14) no longer depends on t1. [g(x) is
nvertible if f(z) attains only positive or only negative values in
he integral range. This is the case according to the suppositions;
hus F(z) is strictly monotone increasing or decreasing and hence
nvertible.]

Assuming that the slope a of the temperature course in spring is
onstant every year, and that the temperature level b varies from
ear to year, we  can deduce from (14) that the “trend ∂t2/∂b of the
ate t2 of beginning of blossom with reference to the temperature

evel b” does not depend on either of the calibration parameters F*

nd TBF. These parameters only determine the value of the term in
quare brackets, which represents the offset in the linear t2–b rela-
ion. Because various tuples (F*,  TBF) can generate the same offset
onstant, TBF and F* cannot be determined uniquely.
Warming model (with a = 1/6 K d−1 and t2(b = 0 ◦C) = 70 DOY). Both parameters can
attain all values on the curve without changing the model results as long as the
relation t1 < ts remains valid.

An analytical equivalent of Eq. (14) for the Spring-Warming
model [Eq. (1) and (2)] follows if one inserts f(z) = z into (12), per-
forms the integration

F∗ = 1
a

z2
2
2

= (a t2 + b − TBF )2

2a
= a(t2 + (b/a) − (TBF /a))2

2
(15)

and solves (15) for t2:

t2 =
[(

2F∗

a

)1/2
+ TBF

a

]
−

(
1
a

)
b. (16)

Formally, there are two solutions. A minus sign in front of (2F*/a)1/2

in (16) would also be a solution of (15). Since we want t2 > ts, the
solution with the plus sign must be picked.

As long as t1 < ts = (TBF − b)/a is true, the term in square brackets
can be held at a constant value c, even if TBF is altered. Equating c
with the term in square brackets and solving for TBF gives

TBF = a c − (2F∗a)1/2 (17)

The indeterminate range of TBF and F*, described by (17), is shown in
Fig. 1. For this figure, we have chosen TBF = 4 ◦C, b = 0 ◦C, a = 1/6 K d−1

and t2 = 70 DOY and calculated F* from (15). Then c, which equals
the square bracketed term in (16), could be derived. With c held
constant on this value, F* was varied and TBF was  calculated from
(17).

The course of t2 as a function of b and the trend ∂t2/∂b, defined by
(16), remains constant for every tuple (F*, TBF) on the line in Fig. 1,
provided that t1, b and TBF fulfil the condition t1 < ts = (TBF − b)/a.

If we had observations of t2 and b for several years, we could
perform a linear regression and determine the regression param-
eters  ̨ and  ̌ for the relation t2 =  ̌ + ˛b. In that case, we  would
calculate  ̌ (the offset) instead of the term in brackets in (16) and

 ̨ (the slope) instead of −(1/a) in (16) directly with the help of the
“normal equations”. The huge difference compared with (16) is that
the regression is able to adapt the slope ˛ to the real phenological
trend, but the Spring-Warming model is not able to adjust the slope
since −(1/a) does not depend on the calibration parameters F* and
TBF but only on the slope a of the temperature increase in spring
[see Eq. (5)]. Hence, the slope in the Spring-Warming model is not
at all related to the plant-specific trend of the date of flowering.
Not even a change of the forcing function Rf(T) or f(T − TBF), resp.,
can eliminate this problem which can be deduced easily from (14).
The calibration of the Spring-Warming model is additionally com-
plicated by the fact that F* and TBF are not uniquely determined as

long as t1 < ts applies.

Fig. 2 proves that the trend ∂t2/∂b does not depend on F* and
TBF, as long as the condition t1 < ts is fulfilled. The graphic shows
the course of t2 as a function of b for different sets of (F*, TBF). The
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Fig. 2. Dependence of t2 on the temperature level b in the Spring-Warming model
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Fig. 3. Dependence of t2 from temperature level b in the Spring-Warming model
at  constant temperature increase “a” (linear with time) in spring (without day-to-

is smaller in absolute value than −6 d K−1) only if TBF is unphysio-
logically small or the t1 chosen is much greater than ts. If the last
condition applies, one runs into the danger that the starting date
t1 of temperature summation falls after the beginning of the real
t  constant temperature increase “a” (linear with time) in spring (without day-to-
ay  fluctuations) for different parameter sets (F*,  TBF) with t1 = “1” = const. The trend
annot be altered by changes in F* and TBF!.

lope is the same for all curves. Only for great b-values, when ts

ecomes smaller than t1, the trend changes and becomes weaker.
b can be interpreted as the long-term average of air temperature
n 1 February, since only after that date the increase of temperature
n spring is approximately linear. Accepting this interpretation, t1
nd t2 must be counted starting with 1 “DOY” on 1 February.]

Even for the case where the condition t1 < ts is violated, an ana-
ytical solution for the Spring-Warming model can be specified. If
1 > ts applies then

∗ =
∫ t2

t=t1

(a t + b − TBF ) dt (18)

as to be computed instead of (7) because now the integrand is
lready positive at t1. Integration leads to a quadratic equation for
2 with solution

t2 = ts +
[

(t1 − ts)
2 + 2F∗

a

]1/2
for t1 > ts

t2 = ts +
[

2F∗

a

]1/2
for t1 ≤ ts

with ts:=TBF − b

a
and T(t) = a t + b.

(19)

eep in mind that ts is a function of b and TBF for fixed a. Thus ts is
ot constant if TBF or b are varied. The second line of (19) matches
16) and is repeated here only for completeness. If t1 > ts, the trend
t2/∂b is no longer independent of the calibration parameters TBF

nd F*.  This can be seen if the expression for ts is inserted into the
rst line of Eq. (19) and the partial derivative with respect to b is
aken [Eq. (20)].

∂t2

∂b
= −1

a
+ 1

a

t1 − ts

[(t1 − ts)
2 + (2F∗/a)]

1/2
(for t1 > ts) (20)

or t1 ≤ ts, the second term in (20) must be omitted so one obtains
he constant trend −1/a, which we have already seen in Eq. (16).

In Fig. 3 not only the tuples (F*,  TBF) are varied, but also t1. To
btain values comparable with the real Spring-Warming model,
e have chosen a = 1/6 K d−1 for the temperature increase in spring

gain. This corresponds to a “trend of t2” with −6 d K−1 provided
hat t1 < ts. F* was chosen in a way that all curves have the same t2
t b = 0 ◦C.
Because there are daily variations and the course of temper-
ture is not exactly linear but rather matches a sine curve over
he year, the idealized model (20) will show deviations compared
ith the real Spring-Warming model which is driven by observed
day  fluctuations) for different parameter sets (t1, F*, TBF). The textbox shows (in
parenthesis) the range for b with constant slope ∂t2/∂b = −1/a  = −6 d K−1 [the range
follows from the condition t1 < ts and ts according to Eq. (6)].

temperatures. Nevertheless, the analytical model explains many of
the unusual or unwanted properties of the true Spring-Warming
model (as well as of related forcing models): The smaller TBF and
the greater t1, the less intense is the advance of t2 for high values
of b. High t1-values also achieve the reduction of the high negative
trends already at relatively small b-values.

Direct integration of (18) leads to

F∗ = 1
2

a(t2
2 − t2

1) + (b − TBF )(t2 − t1) (for t1 > ts) (21)

and from the second line of (19), by solving for F* one gets:

F∗ = a

2
(t2 − ts)

2 (for t1 ≤ ts) (22)

If one postulates that the average beginning t2 of blossom always
falls on the 70 DOY in the present climate at today’s temperature
level b = 0 ◦C, and once again a = 1/6 K d−1, Eqs. (20)–(22) give the
(today’s) trends ∂t2/∂b as a function of TBF which are shown in Fig. 4.

Fig. 4 shows that: the greater t1 and the smaller TBF, the less
negative is the trend of t2 with b. This agrees with the results from
Fig. 3. At t1 = 0 DOY (solid black line), the trend remains constant at
−6 d K−1 for all TBF > 0 ◦C. At t1 = 12 DOY (black dash-dotted line), the
trend remains constant for all TBF > 2 ◦C, etc. This means the model
can be adapted to an observed trend (provided this observed trend
Fig. 4. Trend ∂t2/∂b as a function of TBF at b = 0 ◦C for different values of t1. F* has
been chosen in a way that t2(b = 0 ◦C) = 70 DOY (with a = 1/6 K d−1). The start of the
real  forcing is at t = ts = 6(TBF − 0 ◦C) d K−1 = 6TBF(◦C)−1 DOY in this case.
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Fig. 5. Phenological stations with observations for the beginning of blossom of apple
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orcing. In the idealized version with the linear temperature
ncrease, presented here, there is not only a risk, but it is a fact
hat t1 starts too late since ts is the start of the actual forcing!

.2.1. Summary of the preceding result
The trend ∂t2/∂b in the Spring-Warming model, and in all forc-

ng models whose forcing function Rf(T) fulfils the requirements
entioned at Eq. (4),  does not depend on the calibration parame-

ers TBF and F*, but only on the slope a of the temperature increase
n spring (which is assumed to be constant in this study). This is
rue, as long as the start of the summation t1 [see Eq. (1)] precedes
he start ts of the real forcing and as long as the smoothed course of
he daily mean temperatures can be treated as approximately lin-
ar. However, if t1 > ts, the calibration parameters affect the trend.
amely, the effect is larger, the greater the t1 and the smaller the

BF selected.
With increasing b (increasing temperatures in the context of

limate change), ts becomes smaller [Eq. (6)]. As a consequence, the
rend of t2, which is only determined by a in the present climate
provided that t1 precedes the real start ts of forcing and TBF has a
hysiological meaningful value), will change in the future because

s will become smaller than t1 if a certain temperature level b is
eached. The intensity of this change is defined by TBF and F* [Eq.
20)]. Both parameters cannot be calibrated properly for the current
limate conditions because there is an indeterminate range (see
ig. 1) in which one parameter can be varied without changing the
odel results significantly. If t1 is set to very small values, so that

ven in the far future the condition t1 < ts remains valid, then, in
eneral, the performance of the model is very poor for the present
limate (i.e., large root mean square errors when validated with
ndependent data). The trend is also much too negative, causing a
oo-large advance of the date of flowering. If very late t1-values are
hosen, then the model can be calibrated much more precisely. But
n this case, there is a risk of missing parts of the forcing period. The
orcing requirement F* could therefore be already partially fulfilled
efore accumulation in the model starts at t1 in the future.

All these deficiencies lead to the conclusion that the period
n which the plant is able to react to environmental stimuli, is
escribed insufficiently by the conventional forcing models. Some-
hing is missing that prevents the plants from reacting too early to
emperature stimulation.

.3. A new approach to improve the Spring-Warming model

To improve the performance of the model, the forcing function
f(T) [Eq. (2)] was modified, supplemented and tested with addi-
ional quantities (sunshine duration, daily mean global radiation,

ean global radiation over the daylength period, daylength itself,
tc.). The best result for all tested quantities and fruit species, which
e investigated up to now (apple, sour cherry, sweet cherry, pear,

trawberry, grapevine, peach, apricot, plum), was found with the
ower function approach (23) instead of (2):

f (T) = max(0.,  T − TBF )
(

daylength

10 h

)EXPO

(23)

ere daylength is the time between sunrise and sunset in hours.
t depends on the day of the year and the geographical latitude
nd was calculated using the formulas from Muneer (2004).  The
10 h” in the denominator is for normalization and to adjust the
agnitude of F* to values similar to the one used in the origi-

al Spring-Warming model. [Even though the magnitudes of (23)
nd (2) are similar, the forcing requirement F* and the forcing rate

unction Rf(T) of both models are not comparable because they rep-
esent different quantities. To emphasize that we will call the “unit”
f F* in the improved model PTU (instead of GDD) although the real
hysical units of both F* are the same (K d).] EXPO is a new model
in  the federal state of Hessen in Germany. Grey tones indicate the number of valid
observations in the period 1951–2009. The small rectangle indicates the grid point
near the city Frankfurt/Main.

parameter. Its value depends on the fruit species and on the region,
and must be optimized in conjunction with the other parameters.
Besides the simple power function dependency on daylength in the
new factor in (23), we tested several different functions for this “DL-
term”, including the four-parameter logistic equation (Motulsky
and Christopoulos, 2003) with Bottom = 0, “Top-Bottom” = const. and
optimized LogEC50- and Hillslope-parameters. But the simple factor
in Eq. (23) showed the best performance.

Therefore, the next step in this study was to compare the per-
formance of Eq. (23), called model M1  in the following, with three
other models (M2–M4) which are based on the original Eq. (2).

3. Materials and methods

3.1. Phenological data

The decisive parameter for this study was  the start of apple
blossom (Malus domestica,  early ripening variety with no further
specifications). We  analysed a total of 48 years of data for the begin-
ning of apple blossom (BBCH 61) from 1962 to 2009. All available
phenological data for Germany (between 800 and 3000 obser-
vations per year; Fig. 5 shows only a part of these phenological
stations for the federal state of Hessen) were regionalized on a grid
with 0.2◦ resolution (14 km × 22 km)  and covered the whole area
of Germany. This was  done using second-order universal kriging
(Wackernagel, 1998; Blümel and Chmielewski, 2011) with a drift
term depending on height. The 81 grid points which cover the fed-
eral state of Hessen were then selected for our study. The model
results will be discussed for a typical, individual grid point near
Frankfurt/Main (8.8◦E, 50.2◦N, 149 m a.s.l.). This grid point is rep-
resentative for all grid points in Hessen with intensive cultivation
of apple trees, and it has a characteristic altitude and central loca-

tion. In addition, we  tested a “regional” model, which was designed
to derive the best average results for all 81 grid points with a single
parameter set. The results will not be shown here because they are
very similar to the outcomes at the individual grid point.
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Fig. 6. Observed and calculated dates for the beginning of apple blossom (t2)
1962–2009, calculated with observed temperatures, and derived from different
model versions at a grid point near the city Frankfurt/Main. All model versions
were calibrated for the even years in 1962–2009. Shown are all years (even and
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.2. Observed meteorological data

In order to model the annual date of beginning of apple blossom
nd to calibrate the models, we used air temperatures observed
y the German Meteorological Service (DWD) from 1961 until
009, which were provided within the research initiative INKLIM-
. These data were regionalized on a 0.2◦ grid using second-order
niversal kriging as with the phenological data. The grid also covers
he state of Hessen with 81 grid points.

.3. REMO-UBA data

In this study, only results from the dynamic regional climate
odel REMO-UBA will be shown (control run C20: 1971–2000 and
HG emission scenario A1B: 2001–2100). The results for models
CHAM5-CLM, HadCM3-CLM and WETTREG 2010 are qualitatively
imilar and not shown here.

REMO-UBA is a 3-dimensional, dynamic hydrostatic regional cli-
ate model with a spatial resolution of 0.088◦ (≈10 km) (Jacob

t al., 2007). The sub-scale processes are calculated with the
hysical parameterizations of the global climate model ECHAM 4
Roeckner et al., 1996). The global climate model ECHAM 5/MPI-
M (Roeckner et al., 2003) (spectral model with resolution T63;
200 km)  is used to drive the regional model. The inner core model

egion of REMO-UBA includes Germany, Austria and Switzerland.
The temperature data from the regional climate scenarios were

ttributed to the same grid as the observed data.
All results of the Regional Climate Model (RCMs) were BIAS

orrected on the 14 km × 22 km grid since there are systematic
epartures between the control run of the model (C20) and the
bservation depending on the season and region. For temperature
ata (T) we used an additive model correction, which was  based on
onthly temperature deviations in the period 1971–2000 between

he RCM (C20) and the observed gridded temperatures of each grid
oint (i, j). To increase the stability of the monthly correction, for
ach grid point the surrounding eight grid points were additionally
onsidered in order to calculate the average temperature depar-
ures (3 × 3 grid points, the central grid point is the point to be
orrected).

In order to avoid discontinuities between the monthly cor-
ections, we  calculated a cubic spline that passes through all 12
onthly correction terms (Blümel and Chmielewski, 2011). The

orrection for the day t = 1–365 (366) was the calculated value for
he spline on this day [Eq. (24)]:

Model,corr.(i, j, t) = TModel,uncorr.(i, j, t)

+ spline

(
T̄1971−2000;mon

Observation

3×3
− T̄1971−2000;mon

Model,uncorr.

3×3
)

(i, j, t) (24)

Model,corr. is consequently the air temperature after BIAS correction
nd TModel,uncorr. the temperature in the RCM without correction.

.4. Model versions

We  will discuss four different model versions. Model M1  uses
q. (1) with the new forcing function Rf(Ti) according to Eq. (23)
hich was extended by the daylength factor. All four parameters

F*, TBF, t1 and EXPO) were optimized.
The three remaining models make use of Eq. (2) without taking

he daylength into consideration. In model M2,  all three remaining
arameters (F*,  TBF and t1) were fitted. Model M3 uses the optimal

1-value of model M1  (t1 = 6 DOY = const.) and only F* and TBF were

ptimized. Model M4  is equal to model M3,  but the optimal value
or TBF was not searched in the range −10 ◦C to +10 ◦C. It was  now
estricted to 0–10 ◦C. This latter range is considered to be a physi-
logically meaningful temperature range. [The negative TBF, which
odd) from 1962 to 2009 [DL = 1: with daylength term, Eq. (23); DL = 0: without a
daylength term, Eq. (2)].

occurs as the optimal parameter in model M3, must be regarded as
a pure fit parameter. As will be shown below, this value gives better
results (smaller errors) than model M4 which uses a physiologically
meaningful, positive TBF.]

3.5. Calibration of phenological models

The unknown parameters F*, TBF and t1 in the forcing model (1)
and (2) [or (1) and (23) with additional unknown parameter EXPO]
can be determined by minimizing the root mean square (RMSE)
error

RMSE(opt) =

⎡
⎣ 1

N

N∑
j=1

(t2(pred, j) − t2(obs, j))2

⎤
⎦

1/2

(25)

between predicted t2(pred, j) and observed dates t2(obs, j) of begin-
ning of blossom, using observed temperatures for as many years N
as data are available. We  used a version of the ‘simulated anneal-
ing’ procedure (Metropolis et al., 1953; Press et al., 1997) for the
minimization procedure.

For optimization, the available data from 1962 to 2009 (N = 48)
was split into two  halves. The 24 even years were used for
optimization [i.e., to minimize the RMSE(opt)]. To check the perfor-
mance of the model in years, which were not used for calibration
purposes (validation), we calculated the root mean square error
RMSE(ver) over the 24 odd years. Odd years are almost independent
of the even years used in optimization. Splitting into two disjoint
time ranges (1962–1985 and 1986–2009) would have given better
statistical independence of the optimization and validation years.
But in this case, the intense advance in t2 which can be observed
past 1989 (see Fig. 6) could not enter into the calibration. Hence the
determination of the effective future trend would be less reliable.

3.6. Computation of confidence intervals for the model parameter

Most of the model parameters have very large confidence
intervals. To illustrate this, we calculated joint confidence intervals
for some of these parameters. The calculations used the method

from Chapter 18 of Motulsky and Christopoulos (2003) combined
with the 300,000 parameter tuples and the related RMSE(opt)
which were tested with the Simulated Annealing procedure. The
confidence region extends over all parameter values leading to
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 RMSE between the minimal RMSE(opt) and the upper limit
MSE(95). RMSE(95) follows from

MSE(95) = RMSE(opt)
[

F0.95
K,N−k

k

N − k
+ 1

]1/2

(26)

0.95
k,N−k

is the 95%-quantile of the F-distribution with (k, N − k)-
egrees of freedom. k is the number of optimized parameters, and

 is the number of years which were used for optimization.

. Results

Here, the model performance on a single grid point near the city
rankfurt/Main (8.8◦E, 50.2◦N, 149 m a.s.l.) will be investigated.

Table 1 shows the optimized model parameters for the four
odel versions and their search ranges. Also shown are the RMSE

alues for the optimization and validation years. Model M1  has a
hysiologically meaningful base temperature TBF = 1.7 ◦C. The start-

ng day t1 = 6 DOY is reasonable, too. However, in model M2,  t1
hows a relatively late starting day (56 DOY) for temperature accu-
ulation, especially if the model will be further used to project the

lossoming date. In model M3,  the base temperature TBF has very
nrealistic low values (−9.0 ◦C), and model M4  shows reasonable
alues but has a relatively high RMSE; in particular the RMSE(opt)
s more than twice as large as in model M1.

The course of t2 in the optimization/validation period is visu-
lized in Fig. 6. All four model versions, which were optimized
ith observed temperatures, show an apparent fairly good agree-
ent with the observed values (grey bold line). But an inspection of

he RMSE(ver)-column of Table 1 shows that the root mean square
rror for model M1  is much lower than for all other models with-
ut a daylength term. Even if we consider the relatively late t1 of
odel M2  as a substitution for a “switch” to terminate ecodor-
ancy, e.g. caused by a critical photoperiod, this sudden start-up of

orcing does not perform as well as the continuous weighting with
aylength in Eq. (23) and model M1.

Table 2 shows that for current climate conditions nearly all mod-
ls are able to simulate the average date of the beginning of apple
lossom (23–25 April). However, models M3 and M4  fail in the cal-

ulation of the extreme blossoming dates. Again model M1  is the
nly model which exactly calculates the average beginning of apple
lossom (24 April) and also has the lowest deviation in the extreme
ears.

ig. 8. 95%-confidence interval for TBF and F* in model M3  (search range for TBF: −40 ◦C to 1
right). The “lines” are not identical with the indeterminate range of Fig. 1 because t1 > ts
with REMO-UBA temperatures (GHG emission scenario A1B) for the grid point near
Frankfurt/Main (2002–2100).

The projections of t2 for the optimized models M1–M4  (Table 1)
are shown in Fig. 7. These data were calculated with the tempera-
tures of the REMO-UBA scenario A1B, up to the year 2100 at the
selected grid point. The solid black line represents the result of
model M1  with the new approach (23). The dashed line (model M2)
behaves similarly to the solid black line, but the change of t2 up to
the end of the 21st century (2071–2100 vs. 1971–2000) is approx-
imately 7 days less and amounts to −10.5 days, only (see Table 3).
The dot-dashed line (model M3)  also shows meaningful behaviour
and �t2= −15.4 days almost equals �t2 of model M1. But this result
is achieved using a much too low, physiologically unrealistic base
temperature TBF = −9.0 ◦C, and the model performed very poorly at
validation for the present climate (Table 1). Model M4  (grey line)
which has a reasonable base temperature and a useful starting day,
shows a very extreme result: The predicted advance in t2 amounts
to −27.1 days and the course displays very strong fluctuations.

In Table 3, in addition to the possible changes �t2, the trends
(2011–2100) of t2 are given for all four models. The numbers in
parentheses represent 95%-confidence intervals. The trends (in
days per 90 years) are significantly greater than the changes of the

30 year averages in 100 years because the negative slope (advance)
in t2 over time is quite small before 2030 and increases substantially
soon afterwards (see Fig. 7).

0 ◦C) (left) and in model M1 (slice for the optimal values t1 = 6 DOY  and EXPO = 1.56)
in the left figure and the daylength term is used in the right figure.
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Table  1
Optimal parameters for the four versions of the Spring-Warming model, derived for apple and the grid point near Frankfurt/Main (at 0.2◦ resolution).

Model EXPO [1] F* [GDD resp. PTU] TBF [◦C] t1 [DOY] RMSE(opt) [days] RMSE(ver) [days]

M1  1.56 540.5 1.7 6 2.18 3.99
M2 0.00 220.6 3.5 56 2.59 5.70
M3 0.00 1486.5 −9.0 6 3.48 6.50
M4  0.00 267.9 3.6 6 4.75 5.35
Search range 0–5 100–5000 −10 (0) to 10 1–100 – –

Table 2
Statistical parameters for the observed and calculated dates in the beginning of apple blossom (t2) with the four versions of the Spring-Warming model, derived for the grid
point  near Frankfurt/Main (at 0.2◦ resolution); t2: mean 1962–2009; Conf95: 95%-confidence interval for t2; Max: latest date; Min: earliest date for the beginning of apple
blossom in the period 1962–2009.

Model t2 [DOY] Conf95 [days] Max  [days] Min  [days]

Observation 114 (24 April) 2.4 130 (10 May) 99 (9 April)
M1 114 (24 April) 2.2 129 (9 May) 98 (8 April)
M2  113 (23 April) 2.3 128 (8 May) 98 (8 April)
M3 115 (25 April) 2.3 135 (15 May) 100 (10 April)
M4  113 (23 April) 3.2 134 (14 May) 89 (30 March)

Table 3
Possible changes �t2 (2011–2040, 2041–2070 and 2071–2100 vs. 1971–2000) and trends (2011–2100) in the beginning of apple blossom, derived with the four versions
of  the Spring-Warming model at the grid point near Frankfurt/Main (at 0.2◦ resolution) with temperatures from REMO-UBA with GHG emission scenario C20 and A1B. The
95%-confidence interval is shown in parentheses; bold values indicate significant changes of t2 with *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

Model �t2 (2011–2040 vs. 1971–2000)
[days]

�t2 (2041–2070 vs. 1971–2000)
[days]

�t2 (2071–2100 vs. 1971–2000)
[days]

Trend (2011–2100)
[days in 90 a]

M1 0.7 (±4.3) −11.0 (±4.4***) −17.1 (±4.8***) −26.1 (±5.3***)

m
a
f
fi
p
v
i
−
M

t
t

F
M

M2 4.3 (±4.9) −7.4 (±5.2**) 

M3  −1.3 (±3.9) −10.6 (±3.6***) 

M4  0.7 (±5.8) −17.7 (±6.5***) 

Confidence parameters for F* and TBF were calculated using the
ethod described in Section 3.6.  All parameter tuples which have

 RMSE between RMSE(opt) and RMSE(95) are presented in Fig. 8;
or model M3  (left) and model M1 (right). Unfortunately, both con-
dence intervals are rather wide because of the collinearity of both
arameters (i.e., large F* can be compensated by small TBF and vice
ersa). But the confidence region for F* is about three times wider
n model M3  than in model M1.  And the range for TBF extends from
15 ◦C until −5 ◦C whereas it shrinks to −1 ◦C until 3 ◦C in model
1.

Finally, we  will investigate whether the models show any sys-

ematic errors. For that reason, the errors in t2 were plotted against
he predicted t2-values in Fig. 9. This scatterplot of the residuals

ig. 9. Scatter plot for the residuals as function of the predicted t2-values for model
4  and M1  for apple at the grid point near Frankfurt/Main.
−10.5 (±5.3***) −20.8 (±6.2***)
−15.4 (±3.7***) −21.1 (±4.4***)
−27.1 (±6.9***) −40.9 (±8.4***)

(e.g., Wilks, 2006, Chapter 6.2.6) yields to a significant, system-
atic error (slope of the regression line) of about 33% in model M4
(Fig. 9, upper graph). With the help of Eq. (23) (model M1), this error
is reduced to −0.2% (Fig. 9, lower graph). At model M2, the error
results in 8.5% and in 17% at model M3.  This result strongly empha-
sizes the use of model M1  for the projection of possible changes in
plant phenology.

5. Discussion

Phenological models of type M2  are currently often used to
calculate the timing of phenological events. Even the model of
García-Mozo et al. (2009a) for determination of the flowering date
of olive trees in Spain and Italy, which includes photoperiod as a
co-variable in addition to temperature, is of type M2. In their model
the photoperiod is used as a “step function” to switch on the forc-
ing accumulation at the date when photoperiod reaches a critical
value P0 which is a new parameter to be optimized. This procedure
is equivalent to optimizing t1 in our model M2  if only a single loca-
tion or a small region is considered. The same is true for the models
with photoperiod limitations given by Migliavacca et al. (2012).

Due to a missing (continuous) daylength term in this model type,
the optimal starting date for temperature accumulation is often
at the end of February or the beginning or even in the middle of
March (Zavalloni et al., 2006; Fisher et al., 2007: 20 March) when
the winter season ends and the temperatures are predominantly
favourable for bud development. Unfortunately, these models are
not suitable for projecting possible shifts in plant development for
changed (future) climate conditions, since rising temperatures in
January or February are not considered by the models, provided
that the endodormancy is still released up to the end of December.

For this reason the starting date for temperature accumulation was
sometimes fixed at 1 January (Hänninen and Kramer, 2007; Chuine
et al., 1999). In this case the optimal base temperature TBF has the
tendency to decrease, in order to make ts [see Eq. (6) and (19)]
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ess than t1. Only then, the trend of t2 with respect to b can be cali-
rated. A good example for this behaviour is model M3 in Table 1. In
odel M4,  TBF is not allowed to become negative. As a consequence,

ot only the RMSE(ver) but also the RMSE(opt) adopts large values.
nly the introduction of the daylength term offered an acceptable

olution to this problem. With that addition, the models were able
o consider temperatures as early as in the beginning of the year,
ssuming that the dormancy is already broken. The daylength limits
he influence of temperature on bud development in the beginning
f the year, so that the model calculates the plant development
or current and probably also for warmer climate conditions more
ealistically. For this reason, model M1  always showed the best per-
ormance in our study. Over and above, the residuals between the
imulated and observed values showed no trend, and the very large
onfidence intervals of TBF and F* were reduced remarkably.

The improvements by the daylength term were also confirmed
y a “regional” phenological model (unpublished). This model used
ne optimal parameter set for all 81 grid points in 0.2◦ resolution
hich cover the federal state of Hessen. The average RMSE(ver) was

.3 days smaller than in the versions without a daylength term. In
he south of Hessen, which is the most intensely cultivated area for
ruit trees, model M1 even showed RMSE(ver) values which were
p to 5 days lower than in the other model versions.

Even combined chilling-forcing models (Matzneller et al.,
ubmitted for publication) are strongly improved by the introduc-
ion of a daylength term in the forcing part of the model equations.

ithout a daylength term, the validation of these models yields
trong biases. The end of dormancy is calculated too late and,
espectively, the chilling requirement determined by calibration
akes on too-high values compared with information given in the
iterature (e.g., Linkosalo et al., 2006). Hence they cannot be used
o project possible shifts in the timing of phenological events until
100. The chilling part of these combined models will become

mportant under future climate conditions with increasing winter
emperatures, since these can cause a delay in the break of dor-

ancy or, at worst, no release at all will be achieved (If the break of
ormancy is delayed or advanced additionally depends on the chill-

ng model type and on the chilling requirement of the considered
lant species, see Chmielewski et al., submitted for publication).
hese consequences cannot be described by pure forcing models.
ith a daylength term, the combined chilling-forcing models can

e used for climate change projections until 2100. Matzneller et al.
submitted for publication) showed by means of external valida-
ions for tart cherry that the relative reduction in RMSE(ver) was
ven greater than in Table 1 (30–50%). Moreover, their model was
ptimized for one location in Germany, but could be applied suc-
essfully in Central Europe and at one station in North America.

. Conclusion

Our study has shown that the original, commonly used phe-
ological forcing models show several systematic shortcomings:

f one uses physiologically meaningful values for the starting date
f temperature accumulation (t1) and base temperature (TBF), the
odels exhibit a built-in trend for the beginning of blossom (t2)
ith increasing temperature level (b), which cannot be influenced

y the model parameters itself and which is too large in absolute
alue. As a consequence, large RMSE (e.g., model M4 in Table 1)
alues emerge.

Implementation of an additional daylength term in the forcing
unction eliminates all these problems almost entirely, and reduces

he RMSE at validation, remarkably. Additionally, this term auto-

atically leads to physiologically meaningful model parameters.
As already mentioned, the physiological influence of daylength

n plant development is still controversial (see references in the
d Forest Meteorology 164 (2012) 10– 19

Introduction). So, we cannot guarantee that there is indeed a
physiological response to daylength for all plants, but the models
improved their performance for each of the 9 fruit species which
were mentioned in Section 2.3 if a daylength term was considered.
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